Table of Contents Table of Contents
Previous Page  532 / 762 Next Page
Basic version Information
Show Menu
Previous Page 532 / 762 Next Page
Page Background

532

Chapter 12: Hypothesis Tests – Large Samples

Figure 12- 8:

Display of the Test for a Single Population

Proportion workbook output for

Example 12-4

The output shows that the

P

-value = 0.0580 >

= 0.02 (2%) so the null

hypothesis will not be rejected and one will have the same conclusion as

when the test was done using the classical approach.

Note:

The test statistic in the above tests,

is equivalent to

̂

. Observe that this is similar to the

score

discussed in Chapter 10 when dealing with the sampling distribution for a

population proportion.

Accept/Fail to Reject/Do not Reject

H

0

In hypothesis testing, some authors may use the phrase “accept the null

hypothesis” instead of “fail to reject the null hypothesis” or “do not reject

the null hypothesis.” It does not matter which of the phrases is used when

making a decision about

, one should always keep in mind that we are not

proving the null hypothesis. All that is being inferred is that the sample

evidence is not strong enough to warrant rejection of

. In addition, when

we do not reject the null hypothesis, we may infer that there is not enough or

insufficient sample evidence to conclude that the alternative hypothesis is

true, since, whatever we are trying to conclude about the population is

stipulated in the alternative hypothesis.

Figure 12-9

gives an idea of the

wording of the conclusion in hypothesis testing.